| <code>In[89]:= PadeApproximant[D[u3[x], x], {x, 0, 2}] |
|
| Out[89]= (1 + (3 A x)/4 + 1/12 (1 - 3 A^2) x^2)/(1 - (A x)/4 + x^2/12) |
|
| In[90]:= Solve[1/12 (1 - 3 A^2) == 0, A] |
|
| Out[90]= {{A -> -(1/Sqrt[3])}, {A -> 1/Sqrt[3]}} |
|
| In[91]:= PadeApproximant[D[u3[x], x], {x, 0, 3}] |
|
| Out[91]= (1 + (A (-7 + 30 A^2) x)/(2 (-2 + 15 A^2)) - (3 x^2)/( |
| 20 (-2 + 15 A^2)) + (3 (-4 A + 15 A^3) x^3)/( |
| 80 (-2 + 15 A^2)))/(1 - (3 A x)/(2 (-2 + 15 A^2)) + ( |
| 3 (-1 + 10 A^2) x^2)/(20 (-2 + 15 A^2)) + ((-8 A + 15 A^3) x^3)/( |
| 48 (-2 + 15 A^2))) |
|
| In[92]:= Solve[3 (-4 A + 15 A^3) == 0, A] |
|
| Out[92]= {{A -> 0}, {A -> -(2/Sqrt[15])}, {A -> 2/Sqrt[15]}} |
|
| In[93]:= N[{{A -> 0}, {A -> -(2/Sqrt[15])}, {A -> 2/Sqrt[15]}}] |
|
| Out[93]= {{A -> 0.}, {A -> -0.516398}, {A -> 0.516398}} |
|
| In[94]:= PadeApproximant[D[u3[x], x], {x, 0, 4}] |
|
| Out[94]= (1 + (A (34 - 225 A^2 + 900 A^4) x)/( |
| 4 (-26 + 60 A^2 + 225 A^4)) - (3 (104 - 873 A^2 + 1840 A^4) x^2)/( |
| 56 (-26 + 60 A^2 + 225 A^4)) + (3 A (-23 - 66 A^2 + 180 A^4) x^3)/( |
| 112 (-26 + 60 A^2 + 225 A^4)) + ((-676 + 4080 A^2 - 6615 A^4 + |
| 2700 A^6) x^4)/(2240 (-26 + 60 A^2 + 225 A^4)))/(1 - ( |
| 3 A (-46 + 155 A^2) x)/(4 (-26 + 60 A^2 + 225 A^4)) + ( |
| 3 (-104 + 229 A^2 + 330 A^4) x^2)/(56 (-26 + 60 A^2 + 225 A^4)) + ( |
| A (937 - 3036 A^2 + 1980 A^4) x^3)/( |
| 336 (-26 + 60 A^2 + 225 A^4)) + ((-676 + 3060 A^2 - |
| 5275 A^4) x^4)/(2240 (-26 + 60 A^2 + 225 A^4))) |
|
| In[95]:= Solve[(-676 + 4080 A^2 - 6615 A^4 + 2700 A^6) /( |
| 2240 (-26 + 60 A^2 + 225 A^4)) == 0, A] |
|
| Out[95]= {{A -> -(1/6) (-1)^( |
| 3/4) \[Sqrt](1/ |
| 10 (294 I - (5289 3^(1/6))/(102681 + 8 I Sqrt[92120595])^( |
| 1/3) - (1763 I 3^(2/3))/(102681 + 8 I Sqrt[92120595])^( |
| 1/3) + 3^(5/6) (102681 + 8 I Sqrt[92120595])^(1/3) - |
| I (3 (102681 + 8 I Sqrt[92120595]))^(1/3)))}, {A -> |
| 1/6 (-1)^( |
| 3/4) \[Sqrt](1/ |
| 10 (294 I - (5289 3^(1/6))/(102681 + 8 I Sqrt[92120595])^( |
| 1/3) - (1763 I 3^(2/3))/(102681 + 8 I Sqrt[92120595])^( |
| 1/3) + 3^(5/6) (102681 + 8 I Sqrt[92120595])^(1/3) - |
| I (3 (102681 + 8 I Sqrt[92120595]))^(1/3)))}, {A -> -(1/( |
| 6 Sqrt[10]))(-1)^( |
| 1/4) \[Sqrt](-294 I - ( |
| 5289 3^(1/6))/(102681 + 8 I Sqrt[92120595])^(1/3) + ( |
| 1763 I 3^(2/3))/(102681 + 8 I Sqrt[92120595])^(1/3) + |
| 3^(5/6) (102681 + 8 I Sqrt[92120595])^(1/3) + |
| I (3 (102681 + 8 I Sqrt[92120595]))^(1/3))}, {A -> (1/( |
| 6 Sqrt[10]))(-1)^( |
| 1/4) \[Sqrt](-294 I - ( |
| 5289 3^(1/6))/(102681 + 8 I Sqrt[92120595])^(1/3) + ( |
| 1763 I 3^(2/3))/(102681 + 8 I Sqrt[92120595])^(1/3) + |
| 3^(5/6) (102681 + 8 I Sqrt[92120595])^(1/3) + |
| I (3 (102681 + 8 I Sqrt[92120595]))^(1/3))}, {A -> -(1/ |
| 6) \[Sqrt](1/ |
| 5 (147 + (1763 3^(2/3))/(102681 + 8 I Sqrt[92120595])^( |
| 1/3) + (3 (102681 + 8 I Sqrt[92120595]))^(1/3)))}, {A -> |
| 1/6 \[Sqrt](1/ |
| 5 (147 + (1763 3^(2/3))/(102681 + 8 I Sqrt[92120595])^( |
| 1/3) + (3 (102681 + 8 I Sqrt[92120595]))^(1/3)))}} |
|
| In[96]:= N[%95] |
|
| Out[96]= {{A -> |
| 0.755308 + 5.55112*10^-17 I}, {A -> -0.755308 - |
| 5.55112*10^-17 I}, {A -> -0.522703 + 1.11022*10^-16 I}, {A -> |
| 0.522703 - 1.11022*10^-16 I}, {A -> -1.2674 + 0. I}, {A -> |
| 1.2674 + 0. I}} |
|
| In[97]:= PadeApproximant[D[u3[x], x], {x, 0, 5}] |
|
| Out[97]= (1 + (3 A (10052 - 10695 A^2 - 91240 A^4 + 83700 A^6) x)/( |
| 2 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) + ((29160 + |
| 1854 A^2 - 2230045 A^4 + 3990270 A^6 - 167400 A^8) x^2)/( |
| 12 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) - ( |
| A (-245484 + 458451 A^2 + 3114160 A^4 + 386880 A^6) x^3)/( |
| 48 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) + ((64800 + |
| 650156 A^2 - 1796719 A^4 + 1925640 A^6 + 200880 A^8) x^4)/( |
| 448 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) + ((568608 A - |
| 632890 A^3 - 6922655 A^5 + 3856350 A^7 - 167400 A^9) x^5)/( |
| 2240 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)))/(1 - ( |
| A (-13308 + 135625 A^2 - 663030 A^4 + 27900 A^6) x)/( |
| 2 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) + ((29160 - |
| 77994 A^2 - 1416295 A^4 + 12090 A^6) x^2)/( |
| 12 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) + ( |
| 5 A (32508 + 12121 A^2 + 135504 A^4 + 24552 A^6) x^3)/( |
| 48 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) + ((194400 - |
| 1619532 A^2 - 13232537 A^4 + 10821540 A^6 - 491040 A^8) x^4)/( |
| 1344 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) - ( |
| A (-373032 - 282105 A^2 + 2254510 A^4 + 304575 A^6) x^5)/( |
| 1440 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6))) |
|
| In[98]:= Solve[( |
| 568608 A - 632890 A^3 - 6922655 A^5 + 3856350 A^7 - 167400 A^9)/( |
| 2240 (8424 + 51770 A^2 - 468375 A^4 + 139500 A^6)) == 0, A] |
|
| Out[98]= {{A -> |
| 0}, {A -> -\[Sqrt](25709/4464 - (1/ |
| 4464)(\[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^(1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)))) - |
| 1/2 \[Sqrt](2618036029/ |
| 12454560 - (61831849775 7^( |
| |
| 2/3))/(20088 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^( |
| 1/3)) - (1/ |
| 100440)((7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)) - |
| 11653870955069/(2490912 \[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259)^( |
| 1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259))^( |
| 1/3))))))}, {A -> \[Sqrt](25709/4464 - (1/ |
| 4464)(\[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^(1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)))) - |
| 1/2 \[Sqrt](2618036029/ |
| 12454560 - (61831849775 7^( |
| 2/3))/(20088 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^( |
| 1/3)) - (1/ |
| 100440)((7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^(1/3)) - |
| |
| 11653870955069/(2490912 \[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259)^( |
| 1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259))^( |
| 1/3))))))}, {A -> -\[Sqrt](25709/4464 - (1/ |
| 4464)(\[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^(1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)))) + |
| 1/2 \[Sqrt](2618036029/ |
| 12454560 - (61831849775 7^( |
| 2/3))/(20088 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^( |
| 1/3)) - (1/ |
| 100440)((7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)) - |
| 11653870955069/(2490912 \[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259)^( |
| 1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259))^( |
| 1/3))))))}, {A -> \[Sqrt](25709/4464 - (1/ |
| 4464)(\[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^(1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)))) + |
| 1/2 \[Sqrt](2618036029/ |
| 12454560 - (61831849775 7^( |
| 2/3))/(20088 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^( |
| 1/3)) - (1/ |
| 100440)((7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^(1/3)) - |
| 11653870955069/(2490912 \[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259)^( |
| 1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259))^( |
| 1/3))))))}, {A -> -\[Sqrt](25709/4464 + (1/ |
| 4464)(\[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^(1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)))) - |
| 1/2 \[Sqrt](2618036029/ |
| 12454560 - (61831849775 7^( |
| 2/3))/(20088 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^( |
| 1/3)) - (1/ |
| 100440)((7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)) + |
| 11653870955069/(2490912 \[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259)^( |
| 1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259))^( |
| 1/3))))))}, {A -> \[Sqrt](25709/4464 + (1/ |
| 4464)(\[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^(1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)))) - |
| 1/2 \[Sqrt](2618036029/ |
| |
| 12454560 - (61831849775 7^( |
| 2/3))/(20088 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^( |
| 1/3)) - (1/ |
| 100440)((7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^(1/3)) + |
| 11653870955069/(2490912 \[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259)^( |
| 1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259))^( |
| 1/3))))))}, {A -> -\[Sqrt](25709/4464 + (1/ |
| 4464)(\[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^(1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)))) + |
| 1/2 \[Sqrt](2618036029/ |
| 12454560 - (61831849775 7^( |
| 2/3))/(20088 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^( |
| 1/3)) - (1/ |
| 100440)((7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)) + |
| 11653870955069/(2490912 \[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259)^( |
| 1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259))^( |
| 1/3))))))}, {A -> \[Sqrt](25709/4464 + (1/ |
| 4464)(\[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^(1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^( |
| 1/3)))) + |
| 1/2 \[Sqrt](2618036029/ |
| 12454560 - (61831849775 7^( |
| 2/3))/(20088 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259])^( |
| 1/3)) - (1/ |
| 100440)((7 (363722122031829547 + |
| 18 I Sqrt[230095974116695490903297934806259]))^(1/3)) + |
| 11653870955069/(2490912 \[Sqrt](1/ |
| 5 (2618036029 + (76671493721000 7^( |
| 2/3))/(363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259)^( |
| 1/3) + |
| 248 (7 (363722122031829547 + |
| 18 I \[Sqrt]230095974116695490903297934806259))^( |
| 1/3))))))}} |
|
| In[99]:= N[%98] |
|
| Out[99]= {{A -> 0.}, {A -> -3.38967*10^-17 - 0.553576 I}, {A -> |
| 3.38967*10^-17 + 0.553576 I}, {A -> -0.510778 - |
| 1.266*10^-17 I}, {A -> |
| 0.510778 + 1.266*10^-17 I}, {A -> -1.42015 + |
| 8.65741*10^-18 I}, {A -> |
| 1.42015 - 8.65741*10^-18 I}, {A -> -4.58971 + |
| 1.39029*10^-19 I}, {A -> 4.58971 - 1.39029*10^-19 I}} |
|
| In[100]:= PadeApproximant[D[u3[x], x], {x, 0, 6}] |
|
| Out[100]= (1 + (A (-18051595200 + 28821322908 A^2 - 72301325965 A^4 + |
| 200933852520 A^6 + 182269360800 A^8 + |
| 4110004800 A^10) x)/(36 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + ((-50965200000 + 306999795960 A^2 - |
| 1246427688327 A^4 + 4017653621200 A^6 - 3275035882460 A^8 - |
| 260340814800 A^10) x^2)/(264 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + (A (-105305508000 + 1044801068058 A^2 + |
| 6182886841371 A^4 - 37770361925990 A^6 + 27055520656080 A^8 + |
| 1107594734400 A^10) x^3)/(4752 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + ((-529254000000 + 4825161138600 A^2 - |
| 21972531103965 A^4 + 31620708118368 A^6 + 4775060622080 A^8 + |
| 68697191640 A^10 - 7535008800 A^12) x^4)/(9504 (320760000 + |
| 347363172 A^2 - 22651834825 A^4 + 24154888720 A^6 + |
| 6290185200 A^8 + 114166800 A^10)) + ((-1972887840000 A - |
| 1045424860128 A^3 + 1096444794215 A^5 - 2683783126420 A^7 + |
| 3613332672000 A^9 - |
| 191535062400 A^11) x^5)/(126720 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + ((-2940300000000 + 18768273717600 A^2 - |
| 54358130936619 A^4 + 86960837890165 A^6 - |
| 36933673973230 A^8 + 27902056675200 A^10 + |
| 1122664752000 A^12) x^6)/(887040 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)))/(1 - (A (29598955200 - 16316248716 A^2 - |
| 743164727735 A^4 + 668642141400 A^6 + |
| 44177306400 A^8) x)/(36 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + ((-152895600000 + 1572176402280 A^2 - |
| 4098240536733 A^4 - 4296663146570 A^6 + 4885019463420 A^8 + |
| 190878296400 A^10) x^2)/(792 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + (A (939089052000 - 8250701529510 A^2 + |
| 21802203471069 A^4 - 2425047113450 A^6 + 236317214760 A^8 + |
| 7535008800 A^10) x^3)/(4752 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + ((-529254000000 + 2359316500200 A^2 - |
| 5043392665137 A^4 - 119138108950 A^6 - 302304295260 A^8 - |
| 130381309080 A^10) x^4)/(9504 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + (A (8373546720000 - 41958983537856 A^2 + |
| 98505753780525 A^4 - 69048126381080 A^6 + |
| 56286197220000 A^8 + |
| 2285511307200 A^10) x^5)/(380160 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) + ((-5292540000000 + 24735582321120 A^2 - |
| 93246362469639 A^4 + 113275623939876 A^6 + |
| 13201774542214 A^8 - 504742921320 A^10 - |
| 46717054560 A^12) x^6)/(1596672 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10))) |
|
| In[101]:= |
| Solve[((-2940300000000 + 18768273717600 A^2 - 54358130936619 A^4 + |
| 86960837890165 A^6 - 36933673973230 A^8 + |
| 27902056675200 A^10 + |
| 1122664752000 A^12) )/(887040 (320760000 + 347363172 A^2 - |
| 22651834825 A^4 + 24154888720 A^6 + 6290185200 A^8 + |
| 114166800 A^10)) == 0, A] // N |
|
| Out[101]= {{A -> 0. - 5.12087 I}, {A -> |
| 0. + 5.12087 I}, {A -> -0.558742}, {A -> |
| 0.558742}, {A -> -0.537983 + 0.290459 I}, {A -> |
| 0.537983 - 0.290459 I}, {A -> -0.537983 - 0.290459 I}, {A -> |
| 0.537983 + 0.290459 I}, {A -> -0.958373 + 0.771157 I}, {A -> |
| 0.958373 - 0.771157 I}, {A -> -0.958373 - 0.771157 I}, {A -> |
| 0.958373 + 0.771157 I}} |
| </code> |