4阶泊松-费米方程数值求解
常见于离子液体等带电软物质体系的4阶泊松-费米方程:
\begin{equation} \frac{d^2\phi}{dx^2}-\delta_c^2\frac{d^4\phi}{dx^4}=\frac{\sinh \phi}{1+2\gamma \sinh^2 \phi/2}=\rho(\phi) \label{Poisson-Fermi2} \end{equation}
边界条件:\begin{equation} \begin{split} \phi(0)=&V_0 \\ \phi'''(0)=&0 \\ \phi(\infty)=&0\\ \phi'(\infty)=&0 \end{split} \label{BC2} \end{equation}
下面我们用bvp4c 解方程,重复出文献 Double Layer in Ionic Liquids: Overscreening versus Crowding中 FIG. 2(a) 中的虚线。
依次取 $V_0=1, 10, 100$,解方程,程序如下: