标签 泊松-费米方程 下的文章

线性4阶泊松-费米方程的解

4阶泊松-费米方程为:

\begin{equation} \frac{d^2\phi}{dx^2}-\delta_c^2\frac{d^4\phi}{dx^4}=\frac{\sinh \phi}{1+2\gamma \sinh^2 \phi/2}=\rho(\phi) \label{Poisson-Fermi4} \end{equation}

低电势极限下,$\phi \ll 1$,方程\eqref{Poisson-Fermi4}右边为 $\phi$,方程为

\begin{equation} \delta_c^2\frac{d^4\phi}{dx^4}-\frac{d^2\phi}{dx^2}+\phi=0 \label{LPoisson-Fermi4} \end{equation}

这是一个高阶常系数线性常微分方程,下面给出解析解。

- 阅读剩余部分 -

4阶泊松-费米方程数值求解

常见于离子液体等带电软物质体系的4阶泊松-费米方程:

\begin{equation} \frac{d^2\phi}{dx^2}-\delta_c^2\frac{d^4\phi}{dx^4}=\frac{\sinh \phi}{1+2\gamma \sinh^2 \phi/2}=\rho(\phi) \label{Poisson-Fermi2} \end{equation}

边界条件:

\begin{equation} \begin{split} \phi(0)=&V_0 \\ \phi'''(0)=&0 \\ \phi(\infty)=&0\\ \phi'(\infty)=&0 \end{split} \label{BC2} \end{equation}

下面我们用bvp4c 解方程,重复出文献 Double Layer in Ionic Liquids: Overscreening versus Crowding中 FIG. 2(a) 中的虚线。

依次取 $V_0=1, 10, 100$,解方程,程序如下:

- 阅读剩余部分 -

泊松-费米方程数值求解

常见于离子液体等带电软物质体系的泊松-费米方程

\begin{equation} \frac{d^2\phi}{dx^2}=\frac{\sinh \phi}{1+2\gamma \sinh^2 \phi/2}=\rho(\phi) \label{Poisson-Fermi2} \end{equation}

边界条件:

\begin{equation} \begin{split} \phi(0)=&V_0 \\ \phi(\infty)=&0 \end{split} \label{BC2} \end{equation}

下面我们用bvp4c 解方程,重复出文献 Double Layer in Ionic Liquids: Overscreening versus Crowding中 FIG. 2(a) 中的虚线。

依次取 $V_0=1, 10, 100$,解方程,程序如下:

- 阅读剩余部分 -