2017年8月

矢量公式

一般运算

$\vec{\mathrm A}\cdot(\vec{\mathrm B}\times\vec{\mathrm C})=(\vec{\mathrm A}\times\vec{\mathrm B})\cdot\vec{\mathrm C}=\vec{\mathrm C}\cdot(\vec{\mathrm A}\times\vec{\mathrm B})=(\vec{\mathrm C}\times\vec{\mathrm A})\cdot\vec{\mathrm B}=\vec{\mathrm B}\cdot(\vec{\mathrm C}\times\vec{\mathrm A})$

$\vec{\mathrm A}\times(\vec{\mathrm B}\times\vec{\mathrm C})=\vec{\mathrm B}(\vec{\mathrm A} \cdot\vec{\mathrm C})-\vec{\mathrm C}(\vec{\mathrm A}\cdot\vec{\mathrm B})$

$(\vec{\mathrm A}\times\vec{\mathrm B})\cdot(\vec{\mathrm C}\times\vec{\mathrm D})=(\vec{\mathrm A} \cdot\vec{\mathrm C})(\vec{\mathrm B}\cdot\vec{\mathrm D})-(\vec{\mathrm A} \cdot\vec{\mathrm D})(\vec{\mathrm B}\cdot\vec{\mathrm C})$

和之导数

$\nabla(f+g)=\nabla f + \nabla g$
$\nabla\cdot(\vec{\mathrm A}+\vec{\mathrm B})=\nabla\cdot\vec{\mathrm A}+\nabla\cdot\vec{\mathrm B}$
$\nabla\times(\vec{\mathrm A}+\vec{\mathrm B})=\nabla\times\vec{\mathrm A}+\nabla\times\vec{\mathrm B}$

积之导数

$\nabla(fg)=f\nabla g + g\nabla f$
$\nabla(\vec{\mathrm A}\cdot\vec{\mathrm B})=\vec{\mathrm A}\times(\nabla\times \vec{\mathrm B})+\vec{\mathrm B}\times(\nabla\times \vec{\mathrm A})+(\vec{\mathrm A}\cdot\nabla)\vec{\mathrm B}+(\vec{\mathrm B}\cdot\nabla)\vec{\mathrm A}$
$\nabla\cdot(f\vec{\mathrm A})=f(\nabla\cdot\vec{\mathrm A})+\vec{\mathrm A}\cdot\nabla f$
$\nabla\cdot(\vec{\mathrm A}\times\vec{\mathrm B})=\vec{\mathrm B}\cdot(\nabla\times \vec{\mathrm A})-\vec{\mathrm A}\cdot(\nabla\times \vec{\mathrm B})$
$\nabla\times(f\vec{\mathrm A})=f(\nabla\times\vec{\mathrm A})-\vec{\mathrm A}\times\nabla f$
$\nabla\times(\vec{\mathrm A}\times\vec{\mathrm B})=\vec{\mathrm A}(\nabla\cdot\vec{\mathrm B})-\vec{\mathrm B}(\nabla\cdot\vec{\mathrm A})+(\vec{\mathrm B}\cdot\nabla)\vec{\mathrm A}-(\vec{\mathrm A}\cdot\nabla)\vec{\mathrm B}$

二阶导数

$\nabla\times(\nabla\times\vec{\mathrm A})=\nabla(\nabla\cdot\vec{\mathrm A})-\nabla^2\vec{\mathrm A}$
$\nabla\cdot(\nabla\times\vec{\mathrm A})=0$
$\nabla\times(\nabla f)=0$

积分定理

$\int_{\mathrm a}^{\mathrm b}(\nabla f)\cdot d\vec{l}=f(\mathrm b)-f(\mathrm a)$
$\int_V(f\nabla^2g-g\nabla^2f)dV=\oint_S(f\nabla g-g\nabla f)\cdot\hat{n}dS$
高斯散度定理
$\int_V\nabla\cdot\vec{\mathrm A}dV=\oint_S\vec{\mathrm A}\cdot\hat{n}dS$
斯托克斯定理
$\int_S(\nabla\times\vec{\mathrm A})\cdot\hat{n}dS=\oint_C\vec{\mathrm A}\cdot d\vec{l}$

夜光云

我们见过蓝天上点缀的朵朵白云。

我们见过压城城欲摧的乌云。

我们迎着朝阳或夕阳,经常看到橙色的云,甚至是壮观的火烧云。

你看过蓝色的云吗?

你可能不相信真有这样的云。

这样的云的确存在,称为夜光云。

比如下图是瑞典斯德哥尔摩拍到的夜光云。

国际空间站上的航天员在太空拍到的夜光云。

- 阅读剩余部分 -

反离子吸附回聚电解质链



参考文献:The Journal of Chemical Physics 128, 244901 (2008)

体系有1价和2价反离子,可以吸附到聚电解质链上。如上图所示,聚电解质链的链节有5种状态,未吸附任何反离子(a),吸附1价反离子(b),吸附2价反离子(c),吸附的2价反离子同时吸附有一个1价共离子(d),2价反离子桥接两个链节。

如何计算配分函数和自由能?

- 阅读剩余部分 -