推导 Hubbard-Stratonovich 变换



Nigel Goldenfeld

伊利诺伊大学Goldenfeld 教授的《相变与重整化群》课程的习题习题4.2,证明恒等式:

\begin{equation*} \int_{-\infty}^{\infty}\Pi_{i=1}^N\left(\frac{dx_i}{\sqrt{2\pi}}\right)\exp\left(-\frac{1}{2}x_iA_{ij}x_j+x_iB_i \right)=\frac{1}{\sqrt{\mathrm {det} A}}e^{\frac{1}{2}B_i(A^{-1})_{ij}B_j} \end{equation*}

式中采用了爱因斯坦求和约定。矩阵 $A$ 为对称正定矩阵,$B$ 为任意矢量。

这其实就是Hubbard-Stratonovich 变换,H-S变换其实就是多变量高斯积分

- 阅读剩余部分 -

两个状态方程,哪个更合理?

《现代统计力学导论》第一章练习 1.1, 1.2,1.4



1.1 列出一些两种能量流动形式的熟悉例子(例如,冰融化的两种方式——搅拌或太阳晒)。

解答:
冬天暖手:搓手或捧热水杯。
热水器:电热水器或燃气热水器

1.2 一根橡皮带的状态方程是

\begin{equation*} S=L_0\gamma \left( \frac{\theta E}{L_0} \right)^{1/2} -L_0\gamma\left[ \frac{1}{2}\left( \frac{L}{L_0} \right)^2+\frac{L_0}{L}-\frac{3}{2}\right], L_0=nl_0 \end{equation*}

\begin{equation*} S=L_0\gamma e^{\theta nE/L_0} -L_0\gamma\left[ \frac{1}{2}\left( \frac{L}{L_0} \right)^2+\frac{L_0}{L}-\frac{3}{2}\right], L_0=nl_0 \end{equation*}

其中 $\gamma$、$l_0$、$\theta$ 都是常数,$n$ 是物质的量,$L$ 是橡皮带的长度,$S$ 是熵,$E$ 是能量。问上面两个方程哪个更符合实际?为什么?对于所选的状态方程,导出张力 $f$ 对温度 $T$ 和 $L/n$ 的依赖关系,即确定 $f(T,L/n)$。

解答:

- 阅读剩余部分 -