解扩散方程

扩散方程为:

\begin{equation*} \frac{\partial P(x,t)}{\partial t}=D\frac{\partial^2 P(x,t)}{\partial x^2} \end{equation*}

这是最简单的扩散方程,扩散系数为常数,其实也是热传导方程

初始条件为:

\begin{equation*} P(x,t=0)= \delta(x-x_0) \end{equation*}

下面给出求解过程。

利用 $P(x,t)$ 的傅里叶变换:

\begin{equation*} P(x,t)= \frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{P}(k,t) e^{ikx} \mathrm dk \end{equation*}

带入扩散方程,有:

\begin{equation*} \frac{\partial \widetilde{P}(k,t)}{\partial t}=-Dk^2\widetilde{P}(k,t) \end{equation*}

解这个方程,得:

\begin{equation*} \widetilde{P}(k,t)=\widetilde{P}(k,t=0)e^{-Dk^2t} \end{equation*}

又有

\begin{equation*} P(x,t=0)= \delta(x-x_0)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{P}(k,t=0) e^{ikx} \mathrm dk \end{equation*}

可得

\begin{equation*} \widetilde{P}(k,t=0) = \int_{-\infty}^{\infty} P(k,t=0) e^{-ikx}= \int_{-\infty}^{\infty} \delta(x-x_0) e^{-ikx} \mathrm dk=e^{-ikx_0} \end{equation*}

所以

\begin{equation*} \widetilde{P}(k,t)=\widetilde{P}(k,t=0)e^{-Dk^2t}=e^{-ikx_0}e^{-Dk^2t} \end{equation*}

所以,

\begin{equation*} \begin{split} P(x,t)=& \frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{P}(k,t) e^{ikx} \mathrm dk =\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{-ikx_0}e^{-Dk^2t} e^{ikx} \mathrm dk \\ \\ =& \frac{1}{2\pi}\int_{-\infty}^{\infty} e^{-Dtk^2+i(x-x_0)k} \mathrm dk \\ \\ =& \frac{1}{2\pi}\int_{-\infty}^{\infty} e^{-Dtk^2}\left [\cos(x-x_0)k+i\sin(x-x_0)k \right ]\mathrm dk \\ \\ =& \frac{1}{2\pi}\int_{-\infty}^{\infty} e^{-Dtk^2}\cos(x-x_0)k\mathrm dk \\ \\ =& \frac{1}{2\pi}\sqrt{\frac{\pi}{Dt}}e^{-\frac{(x-x_0)^2}{4Dt}} \\ \\ =& \left (\frac{1}{4\pi Dt} \right )^{1/2}e^{-\frac{(x-x_0)^2}{4Dt}} \end{split} \end{equation*}

标签: 扩散方程, 傅里叶变换, 偏微分方程, 热传导方程

仅有一条评论

  1. 测试下评论中添加公式

    \begin{equation}
    k=\frac{1}{n}\arccos\sqrt{\frac{f-1}{f}}
    \label{k}
    \end{equation}

添加新评论